Axisymmetric coordinates

Below for visualization purposes we demonstrate three different axisymmetric systems: a regular spherical \((r,\theta,\phi)\), an equal area and a "quasi-spherical" \((\xi,\eta,\phi)\), where

\[ \text{equal area} = \begin{cases} \xi = \log{(r)}, \\ \eta = -\cos{\theta}, \\ \phi = \phi \end{cases} ~~~~ \text{quasi-spherical} = \begin{cases} \xi = \log{(r - r_0)}, \\ \eta:~\theta = \eta + 2h \eta (\pi - 2 \eta) (\pi - \eta) / \pi^2, \\ \phi = \phi \end{cases} \]

with \(r_0\) and \(h\) being user-controlled parameters. The interactive plot below demonstrates the difference between grids, uniformly discretized in each of these coordinate systems.